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We examine the nucleated growth of a binary, immiscible liquid drop within a homogeneous gas. The system
couples the growth of the liquid drop with the phase separation of the immiscible components and, thus, can
potentially reveal novel pattern formation. To carry out this study, we first characterize the thermodynamic
properties of the system in terms of an appropriate Ginzburg-Landau free energy density. By minimizing this
free energy, we construct the equilibrium phase diagram for the system. We then use a lattice Boltzmann
algorithm to solve the hydrodynamic equations describing the dynamical evolution of the fluid. We observe
intriguing tentaclelike structures within the nucleation and growth regime and explore how the formation of
these structures depends on the thermodynamic and transport properties of the system. We give scaling laws
describing domain growth in both the diffusion- and flow-limited regimes. The results highlight the novel
physics that can emerge when there is interplay between the ordering of a density and a concentration field.
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I. INTRODUCTION

Pattern formation through phase separation is a topic of
continuous interest to both theorists and experimentalists [1].
For example, the complex morphologies formed by binary,
immiscible mixtures are still a topic of extensive study [2,3].
There remains, however, an intriguing phase-separating sys-
tem that has not been extensively investigated; namely, a
homogeneous gas that condenses into an AB binary liquid.
Here, the phase separation between the two components, A
and B, occurs inside the growing liquid domains. Conse-
quently, there are two distinct length scales that characterize
the system: the average size of liquid domains and the size of
the A/B regions. Synergistic interactions between the growth
of the liquid phase and the A/B phase separation can lead to
novel behavior, which is both intrinsically interesting and of
practical importance for optimizing various separation pro-
cesses [4].

The existing theoretical studies on this system involved
thermodynamic calculations and led to some ambiguity con-
cerning the morphology of the nucleated fluid [5-7]. Near
the liquid/gas critical point, however, thermodynamics and
hydrodynamics are highly coupled [8] and approaches that
incorporate this coupling could elucidate the structural evo-
lution of the multiphase mixture. Here, we use information
about the thermodynamic state of the system to undertake the
first hydrodynamic studies of the nucleated growth of a bi-
nary, immiscible fluid drop within a homogeneous gas. Using
this approach, we characterize the structure formation and
the rate of domain growth in the system. In particular, we
observe that the liquid phase forms striated “tentaclelike”
structures, which grow linearly with time.

In Sec. II, we describe a mean field model of this system.
In Sec. III we give a brief summary of the lattice Boltzmann
method, a standard technique for numerically modeling the

1539-3755/2005/72(2)/021505(8)/$23.00

021505-1

PACS number(s): 64.75.+g, 47.54.+r, 47.20.—k, 05.70.Ce

continuum equations. In Sec. IV, we give the simulation re-
sults, and in Sec. V, we discuss these results and propose
simple scaling arguments, which give the growth rates for
the nucleated droplet in the diffusion- and flow-limited cases.
In the conclusions, we map our simulation results onto real,
physical parameters in order to facilitate experimental stud-
ies on this system.

II. THE MODEL

The system is modeled by considering two species of par-
ticles, A and B. The particles have hard cores and experience
a mutual long range attractive interaction, which gives rise to
the liquid-gas phase transition. However, the interactions be-
tween like and unlike particles are not equal, resulting in the
binary phase separation within the liquid phase.

The Ginzburg-Landau free energy functional for the sys-
tem is given by

w= [ (e Svers v o)

The gradient squared terms describe the surface tensions be-
tween the liquid-gas and liquid-liquid phases. The bulk free
energy density is given by

Y= 0{p;¢ln<p;¢)+p;(’oln(l);¢>—pln(l—bp)}

—ap”+Np* - ¢°), (2)

where p=p,+pp is the total mass density, ¢=p,—pp is the
mass density difference between species, and 0=kgT/m is a
reduced temperature. The parameters b, a, and N account for
the excluded volume of particles, a mutual attraction, and a
repulsive interspecies interaction, respectively. A detailed de-
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FIG. 1. The phase diagrams for two different values of the in-
terspecies interaction strength \. They show the behavior of a sys-
tem with an average density p and temperature 6. If the temperature
is below the critical point, and p lies between the two solid curves,
then the system lowers its free energy by phase separating into a
liquid and a gas phase. The lambda line divides binary states to the
right from homogeneous states to the left. The spinodal line en-
closes states that spontaneously phase separate. (a) A weaker inter-
species interaction, A=0.008. (b) A stronger interspecies interaction,
A=0.014. The following symbols mark these specific cases: X,
simulation results of the coexistence curve; O, nucleated tentacle
structures; A\, no tentacles form; and [J, spinodal decomposition.

scription of how ¢ is derived is given in the Appendix. From
Eq. (2), we can obtain the pressure, which is given by [9]

J Jd 0
po=pa—f+ (’Da_z_ Y= li)—m)—ap2+k(92—¢2)- 3)
Note that if we set A=0, then equation (3) reduces to the
normal van der Waals equation of state.

Figure 1 shows phase diagrams obtained for two different
interaction strengths, A=0.008 and A=0.014. They indicate
the behavior of a system with an average density p and tem-
perature 6. The area between the spinodal lines defines the
spinodal region. For a uniform system that is quenched into
this region, any arbitrarily small perturbation will grow, and
spinodal decomposition will result. We note that the average
density p can lie within the nucleation and growth region,
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which lies outside the spinodal region, but within the coex-
istence curve. In this case, even if the system is perturbed, it
cannot phase separate, even though it is energetically favor-
able to do so. It is necessary to have some kind of nucleation.
This nucleating agent can either be a region of phase-
separated fluid, or some kind of particle, whose surface is
preferentially wetting. Once initiated, the nucleated region
can grow and allow the rest of the system to reach its ener-
getic ground state.

The dynamic behavior of the above system is described
by the following equations [9]:

9p+ do(puy) =0,
at(pua) + ﬁﬁ(puauﬁ) == 0—',BP01,B + &ﬁo-aﬁs

9+ doQuy) = MV, (4)

Here, u,, is the fluid velocity, o,z is the viscous stress tensor,
and M is the mobility. The chemical potential and pressure
tensor in Eq. (4) depend on the thermodynamic properties of
the system. In particular, the chemical potential is defined by

1) (p+cp
= n
p—¢

) -2\ p— K(PVZ(,D. (5)
The pressure tensor, in turn, is given by [11]

Pop=Pup+ Kylap Ip@+ Kydu Opp, (©)

where
=p,— e _K V o* - e _K Vo2 (7
P=po— KoV —‘EZI el* - k,pVp —BZI pl>. (1)

These equations ensure the conservation of the total mass of
each component, and the total momentum, and are free en-
ergy minimizing. The equations are solved numerically using
a lattice Boltzmann algorithm, which is detailed below.

III. THE LATTICE BOLTZMANN METHOD

The lattice Boltzmann (LB) algorithm is now a widely
used method for studying the dynamic behavior of multi-
phase flows. The classic LB model consists of a set of par-
ticle distribution functions moving on a regular grid. The
distribution functions are moved from site to site at each
time step, and undergo collisions at each site. The collisions
allow the distribution functions to reach local equilibrium
and are chosen to conserve mass and momentum. It can be
shown that the model reduces to the standard Navier-Stokes
equation in the continuum limit [10]. The LB model, how-
ever, solves the equation indirectly, rather than directly, as in
conventional computational fluid dynamics (CFD).

Our model is essentially a combination of the liquid-gas
and binary fluid lattice Boltzmann models proposed by Swift
et al. [11]. The equations are solved on a square lattice in
two dimensions (2D) and on a cubic lattice in 3D. The dis-
tribution functions f; and g; give the density and density
difference, respectively, of the particle populations that make
up the system. Here, the subscript i refers to the velocity
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direction. In 2D, there are nine velocities e;, which move
particles between nearest and next-nearest neighbors in a
time Az. We use a 15-velocity model in 3D. The evolution in
time of the distribution functions is given by

e+ e+ 80 = ) = L) £,
o

B+ eAni+ A) = gr.) - —{g ) - g

The parameters 7, and 7, characterize how the system re-
laxes toward equilibrium, and are related to the viscosity of
the fluid and the mobility of particles, respectively. The
physical variables are calculated from the distribution func-

tions by
p=2fn ©=28n PUe= fitia 9)
i i i
For mass and momentum conservation,

2ft=p 2gl=e 2 filen=pu,  (10)

The higher moments of the equilibrium distribution are
chosen to give the correct continuum equations. An appro-
priate choice is

Mu,
2 g?qeiaeiﬁz 1 5&,8+ @uauﬁ» (1 1)
i At(T@_ 5)
, 3 dp,
> Flleiein=Pog+ pugit +V(1—__>
p i “iatip af a’tp CZ dp

X (ug0pp + Ugdyp + Sypu,d,p),  (12)
pc’
E.ﬁqeiaeiﬁei7= T(éaﬁuy"' 5ayuﬁ+ 55)/”01)5 (13)
1

where v is the kinematic viscosity. The parameter Ax is the
grid spacing, and ¢=Ax/At is the lattice velocity. Note that
the last term in Eq. (12) is necessary for ensuring Galilean
invariance [10].

By performing a Chapman-Enskog expansion [12], which
corresponds to an expansion of equations (8) in a power
series in At and Ax, it is possible to recover the continuum
equations, with a viscous stress tensor given by

3 dpy
Top=pV| dalig+ dguy + 1—?d—p Oapdyty |, (14)

where the kinematic viscosity is
2 1
Ax (Tp - 2)

=—+>r =2 15
v 3 At (13)

IV. NUMERICAL SIMULATIONS

The simulations were performed on a two-dimensional
(2-D) grid of size L,=1024 and L,=1024, with periodic
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boundary conditions imposed in both directions. The values
of k,=0.015 and «,=0.015 were chosen to give interface
widths of approximately four lattice sites. Other parameters
were 7,=1, and Ax=1. Viscosity was changed by varying
the time step within the range Ar=0.1-0.4, and the relax-
ation parameter within the range 7,=0.55-2 [13].

To test our LB algorithm, we performed 1-D simulations
to numerically calculate the liquid and gas coexisting densi-
ties. Our results are indicated by the crosses on the phase
diagrams in Fig. 1; as can be seen, we obtain good agreement
with the theoretical thermodynamic calculations. The small
deviations were caused by the finite interface width.

In this paper, we focus on nucleated growth. An initially
circular region of liquid A, with radius r=13, was placed at
the center of an otherwise uniform system of density p
=3.85 and density difference @=0. A small random noise
was added to p and ¢ to break the symmetry. The parameters
used were mobility M =10, temperature #=0.11, interaction
strength A=0.014, and kinematic viscosity v=1. Note that on
the phase diagram 1(b), this initial state lies just outside of
the spinodal region, within the nucleation and growth re-
gime. Figure 2(a) reveals the evolution of the density differ-
ence ¢ as a function of time for this system. Rather than
simply growing in a roughly circular manner (as happens in
the case of a single component liquid-gas system), we dis-
cover the formation of outwardly radiating, striped tentacles.

To understand this behavior, we note that, initially, the
pressure in the nucleating droplet is lower than that of the
surrounding gas. In order for the droplet to equilibrate with
these surroundings, it consumes some of the nearby gas and
thereby swells. As this fluid is deposited, it phase separates.
The resulting “bullseye” pattern, which has alternating con-
centric circles of A-rich and B-rich fluid, has been previously
observed in nucleated binary liquids [14]. However, in that
case, the structure was found to be a short lived, transient
state. In our case, we observe that the deposition of the
phase-separated liquid is not uniform. Rather than forming a
thin coating, it forms droplets on the surface, as illustrated in
the second frame of Fig. 2(a). One possible reason for the
coating of droplets (rather than a uniform film) is that this
structure corresponds to a lower energetic state, because it
results in the creation of less interfacial area for a given
volume of deposited liquid. After the surface droplets form,
the pressure in the gas just outside their tips is found to be
less than that in the surrounding area. This preferentially
drives fluid toward these regions and results in clearly de-
fined branches that grow outward. The reason for this varia-
tion in pressure is due to surface tension. The pressure dif-
ference between the interior and exterior of an interface, with
radius of curvature R, is given by Ap=p™—p®=g/R. Since
the radius of curvature is smallest at the tips of the drop, the
pressure in the gas phase surrounding these regions, p®”, is
lowest.

We measure the growth of these structures in the follow-
ing way. We calculate the geometric center of the liquid re-
gion, and then consider concentric circles of a given radius
that are drawn around this central point. If the circle just
touches the outermost tip of the farthest tentacle, then this is
defined to be the tip radius. If the circle passes through an
equal amount of liquid and gas, then this is called the core
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(b)

FIG. 2. The time evolution of the density difference profile ¢
across the system. The time is measured in lattice units. Black and
white areas denote the A-rich and B-rich liquid, respectively, and
gray areas represent gas. (a) High viscosity v=1. (b) Low viscosity
v=0.125.

radius. Figure 3(a) shows how the tip radius (solid line) and
core radius (dashed line) change in time, for a system with
viscosity v=1 and mobility M=10. We find that there is a
linear relationship in both cases.

The rate of growth of the radii was found by performing a
linear regression on these curves and calculating the slope.
By changing the viscosity of the fluid, we discover that these
growth rates vary, as illustrated in Fig. 3(b). At low viscosi-
ties, the tentacles no longer appear, as indicated by the fact
that the growth rate of the tip is almost equal to that of the
core. An example of this regime is shown in Fig. 2(b). Here,
the viscosity was v=0.125, and the mobility was M =10. We
observe mixing within the core region, which becomes in-
creasingly active as the viscosity is decreased. This mixing is
due to extensive flow, which makes the tentacle formation
unstable. It was not possible to probe very low viscosities, as
the simulations become numerically unstable.

Figure 3(c) shows the growth rate of the radii as a func-
tion of mobility M, for a viscosity of v=0.5. We find that
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FIG. 3. (a) The variation in time of the tip radius (solid lines)
and the core radius (dashed lines). The viscosity was v=1 and the
mobility was M=10. The time is measured in lattice units. By tak-
ing a linear regression, the tip and core radius growth rates were
found to be 0.020 and 0.0068, respectively. (b) The variation of tip
and core radius growth rates as a function of kinematic viscosity v,
with fixed mobility M=10. The dotted line shows the transition
between the droplet forming/not forming a tentacle structure. (c)
The variation of tip and core radius growth rates as a function of
mobility M. The viscosity was v=0.5.

these rates are approximately proportional to the mobility M,
suggesting that the nucleated droplet growth is limited by
interparticle diffusion (see Sec. V A). Note, also, that there
exists a transition from no tentacles to tentacles at around
M=4. From this, and the results in Fig. 3(b), we conclude
that this transition occurs between low viscosity, low mobil-
ity and high viscosity, high mobility.

On the phase diagram 1(b), the triangles A, squares [,
and circles O show where simulations have been performed,
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(b)

FIG. 4. Snapshots, shown in perspective, of nucleated droplets
in 3D (the gas phase is transparent). Black and white areas are the
A-rich and B-rich liquid, respectively. The mobility was M=5. (a)
Snapshot at rt=9000 with high viscosity v=2. (b) Snapshot at ¢
=7800 with low viscosity v=0.1.

to help delineate the region in phase space where the tentacle
structures form. We find that the structures are more articu-
lated (i.e., have a larger ratio of tip to core radius) as the
compositions get closer to the spinodal curve (see 1(b)). The
results of all our simulations revealed structures with either
four, five, or six tentacles, depending upon the random initial
conditions.

By changing the variable «, it was possible to vary w, the
width of the interface between the A/B domains. Through
this variation, we found that the width of the stripes within
the tentacles is proportional to w.

Simulations were also performed in 3D in order to deter-
mine if the 3-D behavior is qualitatively similar to the 2-D
case. The size of the system was taken to be L,=190, L,
=190, and L,=190. The following values of the parameters
were used in the 3-D simulations: Kp=K<p=0.0075, p=3.85,
0=0.11, and M=5. An initially spherical, nucleating A-rich
liquid region, of radius r=3, was placed at the center of the
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FIG. 5. The core and tip radii of a 3-D droplet, as a function of
time. The low viscosity was v=0.1 and the high viscosity was v
=2. The mobility was M =5.

system. Figure 4 shows snapshots (shown in a perspective
view) of the 3-D droplets that are formed after some time. In
Fig. 4(a), we observe that the fluid was deposited onto the
droplet in alternating A-rich and B-rich layers, and that ten-
tacles formed in much the same way as in Fig. 2(a). The 3-D
simulations are computationally intensive, requiring long run
times. Consequently, the final state shown in Fig. 4(a) still
represents a relatively early stage in the droplet development,
as compared to the 2-D case. However, we expect that in
time, the tentacles would extend and become increasingly
well defined. Figure 4(b) shows that at low viscosities, ten-
tacles do not form. Analogous to Fig. 2(b), extensive mixing
is observed within the core. Figure 5 shows how the droplet
radius grows as a function of time, at both high and low
viscosities for these 3-D studies. Both plots are found to be
linear in the long time limit. The ratio of the tip to core
growth rate at the end of the simulation is found to be much
larger in the high viscosity case, indicative of the tentacle
growth.

V. DISCUSSION AND SCALING ANALYSIS

The long time linear growth of the droplets can be ex-
plained using simple scaling arguments. Figure 6 shows a
contour plot of the free energy density ¢ (see Eq. (2)), below
the critical temperature (in this case #=0.11), as a function
of density p and density difference ¢. The dark regions mark
areas of the lowest free energy, while the light regions mark
the highest free energy. The three black areas show the co-
existing equilibrium states: homogeneous gas, A-rich liquid,
and B-rich liquid. In transforming from the initially
quenched density p to the phase separated state, part of the
fluid follows path 1 and becomes gas, and part becomes lig-
uid, by following the two curves marked by 2 on this dia-
gram. Note, that these paths follow the lines of steepest de-
scent. The fluid does not follow the dashed path, marked by
3, i.e., it does not first undergo liquid-gas phase separation
and then liquid-liquid (A/B) phase separation. The latter
route is not energetically favorable, because the intermediate
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FIG. 6. A contour plot of the free energy density ¢ (see Eq. (2))
[15]. The three minima show the coexistence between the gas and
liquid A-rich and B-rich phases.

point P has a substantially higher energy density. Therefore,
both particle diffusion and gas flow into the liquid are simul-
taneously involved in the growth of the droplet. Hence two
limiting cases exist; these are described below.

A. Growth limited by diffusion

We first consider the case where the mobility of the par-
ticles (and/or the viscosity) is sufficiently low that the inter-
particle diffusion is the limiting factor in the growth of the
droplet. That is, as the droplet grows, gas is deposited onto
the surface and phase separates into A-rich and B-rich layers,
which are sequentially added onto the outside of the droplet.
We now approximately calculate the time it takes for this
homogeneous fluid to phase separate into alternating A/B
stripes, of width ~2w. By substituting wave solutions of the
form @=Ae!'" sin(mx/w) into the Cahn-Hilliard equation, it is
possible to obtain

S
w P w

The inverse of this quantity gives the characteristic time for
each stripe to form; hence, the growth rate of the radius can
be approximated by

d M{2\p,— 6 2
Gt )]
dt w o w

where r, is the radius of the droplet. The right-hand side of
this equation is constant; therefore the growth of the droplet
size is linear in time. Note that this equation also predicts
that the growth rate is proportional to mobility M, in good
agreement with Fig. 3(c).

B. Growth limited by viscous dissipation from flow

We expect that when the mobility is sufficiently high, or
when the fluid is sufficiently viscous, growth would be lim-
ited by how fast the gas can flow and deposit onto the droplet
surface. In this case, the binary nature of the fluid can be
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neglected. A simple understanding of this process can be
gained through energetic considerations. We first describe the
2-D case. The change in the total bulk free energy of the
system resulting from a variation in the radius r; of the drop
is given by

d—F=27TA¢rd, (18)
dr,
where A= 5~ i~ p,(p—p) is the excess free energy den-
sity difference between the initial density p and the final
liquid density p;. It is this energy that drives the droplet
growth. We assume that the surrounding gaseous fluid is be-
ing radially deposited onto the surface, with a velocity u;.
Hence, the droplet growth is described by dr,/dt=(p/ p)u;
(assuming p<<p;). Assuming approximate incompressibility
for the gas, the velocity field, at position r, has the form u
=—(u,r,/r)¥ outside the drop, and u=0 inside the drop. The
viscous dissipation can be estimated by considering the total
dissipation of kinetic energy due to the stress tensor (given in
Eq. (14)),

f O o5 odt = ﬁvu?. (19)

By equating energy liberation, Eq. (18), with viscous dis-
sipation, Eq. (19), and energy taken up in creating additional
interface, we find

2 At//rdﬁu‘v:ﬁvuf+27ro'£us, (20)

pi P
where o is the liquid-gas surface tension. We can rearrange
this expression to find the velocity, and hence the growth rate

—\2
%3_—“(3) (Ary- o). 1)
t prip

This equation shpws the well-known result, that below a
critical radius r§"=0/A, a droplet will evaporate because
of the surface tension pushing inward. For a large radius r,

this equation has the exponential solution
ry= AeCTPIEIp) At (22)

In Secs. V A and V B we gave a description of how the
nucleated region grows. At very early times, the growth rate
is small, and diffusion effects can be neglected. Equation
(22) shows that in this regime the growth rate increases ex-
ponentially in time. When the growth rate becomes compa-
rable to that in Eq. (17), then diffusion can no longer be
ignored. Therefore, at late times we expect the drop growth
to be limited to linear in time. By equating expressions (17)
and (21), we obtain a typical radius that lies within the tran-
sition between these two regimes,

w\2
wvMp,| 2Np;— 0 — (—) KePy

w
tran ~ . 23
" 2wAYp (23)

If typical simulation parameters are substituted into this
expression (p,/p~6,M~5,v~1,Ay~0.05,w~4,2\p,— 0
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~0.1,k~0.01), then we obtain r7*"~15. Since this lies
very early within our simulations (see Fig. 3(a)), it is difficult
to observe the early time exponential behavior. However, the
late time linear behavior (which occurs after this transition
point) is clearly seen.

In 3D, an analysis gives the same growth rate, Eq. (22),
and transitional radius, Eq. (23), up to a constant factor.

It must be noted that the arguments presented here de-
scribe only the average growth rates, and do not explain the
observation of the tentacle structures.

VI. CONCLUSION

To summarize, we find that the mechanism for nucleated
growth is quite different from that observed in single com-
ponent fluids. The phase separation proceeds by long arms,
extending from the nucleation region into the gas. Initially,
growth is limited by flow, and has an exponential solution,
but at a later time, diffusion limits the growth to being linear
in time.

It would be of interest to see whether these structures
could be observed experimentally. In mapping our simulation
results onto a real system, we first discuss the relative impor-
tance of momentum and interparticle diffusion. This is char-
acterized by the Schmidt number Sc=v/D, where D is the
diffusion constant, which is related to the mobility through
D=M[(2\p;— 0)/ p;]. For a typical gas Sc~ 1, and for a lig-
uid Sc~ 50. The reason the Schmidt number is higher in the
liquid case is that the fluid is sufficiently dense that particles
become “caged in” by their neighbors; this inhibits particle
mixing, but enhances momentum transfer because more col-
lisions occur. In our simulations, the Schmidt number is in
the range Sc~ 1-40, hence physically reasonable.

A typical fluid has density p,=10° kg m~3, kinematic vis-
cosity v,=107° m?s~!, and surface tension o,=0.04 N m~/,
where the subscript r denotes SI units. These parameters are
related to the simulation variables through v,=v(At/Ax?)
X(Ax?/At,), and o,=a(A?/p Ax)(p,Ax,/Ar?). Tn the simu-
lations, p=7, v=1, and 0=0.5, in lattice units. Matching
these respective quantities, we calculate the grid spacing to
be around Ax,=2 nm and time step At,=10"'! s. Since the
interfaces are a few lattice sites wide, then the interface
width is around 10 nm, in good agreement with that observed
experimentally [16]. The snapshots in Fig. 2 correspond to
the structure after ~1 us, with a droplet diameter of around
~1 pm. It might not be feasible to experimentally observe
such rapid growth in real time, however, the final state of the
system could be frozen and then structurally analyzed. These
values can serve as a guideline for directing experimental
efforts along fruitful pathways. Note that within the simula-
tions, we have neglected the effect of Brownian noise. It is
possible that this may affect the stability of these structures
at such small length scales. This will be the subject of future
research.

Finally, we note that extensive work has been done on the
domain growth of liquid-gas systems [17] and of binary sys-
tems [2], however, the system described herein remains rela-
tively unexplored. The cooperative behavior between the
phase-separating liquids and the growth of the liquid droplet
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can potentially reveal a wealth of interesting new physics
and therefore warrants further investigation.
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APPENDIX: DERIVATION OF FREE ENERGY DENSITY

In this appendix, we derive the bulk free energy (2) by
constructing a simple, 1-D statistical mechanical model. The
length of the system is taken to be L. The partition function
is given by

z=— 11 f dpl BBk it 1),
Ny I NG!S

(A1)

where p; and x; denote the momentum and position of par-
ticles, T is the temperature, k is the Boltzmann constant, and
N, and Np are the number of A and B particles, respectively.
We make the mean field approximation by assuming that
each particle feels an effective potential ¢(x), which de-
scribes its interaction with all the other particles. This sim-
plification allows us to separate the total potential energy, @,
as follows:

Ny Np
¢ = [E ¢AA(X?) + ¢AB(X?)] + |:2 ¢BA(X?) + (/bBB(x?)],
i=1 i=1
(A2)
where ¢,p is the potential of an A particle sitting in a field

created by B, and a similar interpretation applies to the other
¢ terms. The partition function can then be written as

A2y A Na
fdpAder—(l/kBT)(p R+ gpp+dap)

="
Ny ! Np!
2 Ng
% [J dedee—(l/kBT)(pB /2mB+¢BA+¢BB)} _ (A3)
The momentum integrals are easily done:
f dpBe A BT _ -~ (A4)

The potential energy terms ¢ can be divided into two con-
tributions. The first is a repulsive part, which results from the
hard cores of the particles. This we take to be infinite inside
the cores and zero outside. We assume both A and B have the
same diameter b, giving a total excluded volume of bN. The
second is an attractive part, which we assume to be spatially
constant. When the spatial integrations are performed in Eq.
(A3), the exponential term goes to zero inside the excluded
volume of either A or B, and to a constant, a,,,d,p,dps, OF
app, outside. Therefore,
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_(L-bN)Y
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(AS)
Using Stirling’s formula [In(N!)=N In(N)—-N] in the above
expression, we derive the following free energy:
F=-kzTIn(Z)
=kgT[N, In(N,) + Ny In(Np)
= NIn(L-bN)]+asyNy+ asgNy + agsNg + aggNy.
(A6)

We neglect terms that are constant or proportional to N4 or
NB, since they do not affect the physics within the system;
they simply add an arbitrary constant to the pressure or
chemical potential.
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To capture the salient features of our system, we introduce
an attractive van der Waals potential a, which gives rise to
the liquid/gas phase transition, and a repulsive potential A,
which acts between unlike particles. To a first approximation,
the strength of the interaction is proportional to the density,
so we propose the mean field potentials to be of the form

N, N,
apa=— a_A’ asp=(2\ - a)?B,

L

(A7)

Ng
dpp=—a— .

Ny
=Q2N—a)—,
aps=( a)l L

Substituting these into Eq. (A6) and dividing by L gives the
free energy density (2). In this study, we define the A and B
particles to have equal mass and we choose the mass scale
such that m=my=mp=1.
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